Question L. The	pegimeter	of	σ	pe dal	toriangle	
(a) 2RS					U	
(b) <u>2.3²</u>						
JR JR						
(c) 23 8	-					
$ (d) \frac{2 HR}{3^2} $						
32						

Solution:-

Perimeter = Sum of the three sides of the triangle We know that the sides of a fedal toriangle are a CosA, & CosB & c CosC : Perimeter = a CosA + & CosB + c CosC (1) Now, we know from Sine law that: >

$$\frac{Q}{ainA} = \frac{B}{ainB} = \frac{C}{ainC} = aR$$

. We can write equation (I) as: ->

Now, using
Sind + Sing =
$$2Sin(\frac{a+\beta}{2}) \cdot Ga(\frac{a-\beta}{2})$$

we can write equation (2) as: -
Peximeter = $R[2Sin(\frac{2A+2\beta}{2}) + Sin2C]$
= $R[2Sin(A+B) Ga(A-B) + Sin2C]$ [Since
 $A+B+C=\pi$
= $R[2Sin(\pi-C) Ga(A-B) + Sin2C]$ [Since
 $A+B+C=\pi$
= $R[2SinC(Ga(A-B) + 2SinC(GaC)]$
= $2RSinC[Ca(A-B) + 2SinC(GaC)]$
= $2RSinC[Ca(A-B) + Gas[\pi-(A+B)]]$
 $C=\pi-(A+B)]$
= $2RSinC[Ca(A-B) - Ga(A+B)]$ (3)
Now using
 $2SindSin\beta = Gas(\alpha-\beta) - Gas(a+\beta),$
we can write equation (3) as:--
Perimeter = $2RSinC \propto 2SinASinB$
= $4RSinA-SinB-SinC$
= $4R \propto \frac{Q}{QR} \times \frac{b}{RR} \times \frac{C}{QR}$ [Using Sine Law]

$$= \frac{abc}{ak^2}$$
$$= \frac{2}{R} \times \frac{abc}{4R}$$

Now, Area of Triangle =
$$\Delta = \frac{abc}{4R}$$

$$\therefore$$
 Perimeter = $\frac{2}{R} \times \Delta - 4$

Now, we know that

$$Trradius = 91 = \Delta$$

 \Rightarrow
 $\Rightarrow \Delta = 91 \cdot 8$
 \therefore From equation (4) we can write $\alpha s: \Rightarrow$
 $Perimeter = \frac{2}{R} \times 91 \cdot 8$

$$\Rightarrow \quad \text{Perimeter of fieldal twiangle} = \frac{291.5}{R} \quad \text{Ans} \\ \text{(off twion c)} \quad \text{(off twion c)}$$